首页> 外文OA文献 >Efficient data distribution schemes for EKMR-based sparse arrays on distributed memory multicomputers
【2h】

Efficient data distribution schemes for EKMR-based sparse arrays on distributed memory multicomputers

机译:分布式内存多计算机上基于EKMR的稀疏阵列的有效数据分配方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[[abstract]]Multi-dimensional sparse array operations can be used in the atmosphere and ocean sciences, the image processing, and etc., and have been an extensively investigated problem. Therefore, it becomes an important issue to propose efficient data distribution schemes for multi-dimensional sparse arrays. In our previous work, we have proposed two data distribution schemes Compress Followed Send (CFS) and Encoding-Decoding (ED) for sparse arrays based on the traditional matrix representation (TMR) scheme. We have proposed another scheme, called extended Karnaugh map representation (EKMR), to represent sparse arrays. The EKMR scheme can obtain better performance than the TMR scheme for some sparse array operations. Hence, in this paper, we want to propose efficient data distribution schemes for EKMR-based sparse arrays. We extend the CFS and the ED schemes for TMR-based sparse arrays to EKMR-based sparse arrays first. Then, we compare the performance of these two schemes with that of the Send Followed Compress (SFC), which is an intuitive data distribution scheme for sparse arrays. Finally, we compare these three schemes for EKMR-based sparse arrays with those of TMR-based sparse arrays, respectively. Both the theoretical analysis and the experimental tests were conducted. From the theoretical analysis and the experimental results, we can see that the ED scheme is superior to the CFS scheme that is superior to the SFC scheme for most of testing EKMR-based sparse arrays; the performance of these three schemes for EKMR-based sparse arrays is better than that of TMR-based sparse arrays for all of testing cases, respectively.
机译:[[摘要]]多维稀疏阵列运算可用于大气和海洋科学,图像处理等,并且已被广泛研究。因此,提出用于多维稀疏阵列的有效数据分配方案成为重要的问题。在我们以前的工作中,我们基于传统的矩阵表示(TMR)方案为稀疏阵列提出了两种数据分配方案:压缩跟随发送(CFS)和编码-解码(ED)。我们提出了另一种方案,称为扩展卡诺地图表示(EKMR),以表示稀疏数组。对于某些稀疏阵列操作,EKMR方案可以获得比TMR方案更好的性能。因此,在本文中,我们想为基于EKMR的稀疏阵列提出有效的数据分配方案。我们首先将基于TMR的稀疏阵列的CFS和ED方案扩展到基于EKMR的稀疏阵列。然后,我们将这两种方案的性能与“发送跟随压缩”(SFC)的性能进行比较,后者是稀疏数组的一种直观的数据分配方案。最后,我们分别比较了基于EKMR的稀疏阵列和基于TMR的稀疏阵列的这三种方案。进行了理论分析和实验测试。从理论分析和实验结果可以看出,在大多数基于EKMR的稀疏阵列测试中,ED方案优于CFS方案,优于SFS方案。在所有测试案例中,这三种方案的基于EKMR的稀疏阵列的性能分别优于基于TMR的稀疏阵列。

著录项

  • 作者

    Lin, Chun-Yuan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 [[iso]]en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号